How to care for the Natura 2000 site during the conservation planning?

Experiences and recommendations from the pilot project “Participation in Natura 2000 site management planning in Poland”
How to care for the Natura 2000 site during the conservation planning? - Experiences and recommendations from the pilot project “Participation in Natura 2000 site management planning in Poland”

2011, 2012

CEEweb for Biodiversity is an international network of NGOs in Central and Eastern Europe. The mission of CEEweb is the conservation of biodiversity through the promotion of sustainable development.

Published with the financial support of the European Commission, although its content does not necessarily reflect the donor position or views. The sole responsibility lies with the authors and the donors are not responsible for any use that may be made of the information contained therein.

Please feel free to distribute the information contained in the publication acknowledging the source, and we encourage you to let us know about it. Please cite as: CEEweb for Biodiversity. 2012. Financing Nature in Central and Eastern Europe - Experiences on financing Natura 2000 and conservation activities from the CEE region - Cases from Bulgaria, Hungary, Lithuania, Poland, Slovakia.

Editor responsible: Mátyás Prommer, CEEweb for Biodiversity Secretary General
Text: Pawel Pawlaczyk and Monika Kotulak (Naturalists Club Poland)
Translation: Boguslawa Jermaczek-Mroz and Przemyslaw Jermaczek
Editing: Agnes Zolyomi and Eduard Nedelciu (CEEweb for Biodiversity)
Photos: W. Mróz (page 9), E. Wuk (page 14), A. Jermaczek (page 23), Naturalists Club Poland

1021 Budapest, Széher út 40., Hungary
Tel.: +36-1-398-0135
Fax: +36-1-398-0136
www.ceeweb.org

Swiebodzin, 1 Maja 22, 66 200, Poland
Tel.: +48 68 382 8236
Fax.: +48 68 382 8236
www.kp.org.pl
Introduction

During 2010-2013, conservation planning for approximately 400 Natura 2000 sites in Poland is foreseen by preparing so called ‘conservation measures plans’ (Polish: plan zadań ochronnych; simplified site management plan). By 2017 such documents should be prepared for all Natura 2000 sites in accordance with national and European legal requirements (see also on the note of European Commission on SAC designation and on establishing conservation objectives for Natura 2000 sites).

The ‘conservation measures plan’ and ‘conservation management plan’ are the basic planning documents for Natura 2000 sites in Poland. Its content has a great impact on managing the site in the future and therefore on the efficiency of its conservation. For anyone who is interested in the protection of Natura 2000 site, it is crucial to participate in this conservation planning process - naturalists should not miss this opportunity!

2011 was a year in which several dozens of plans were elaborated. Naturalists Club Poland (Klub Przyrodników), contracted by CEEweb for Biodiversity, took the opportunity and implemented a pilot project, which objective was to participate in the conservation planning process. Naturalists Club Poland has participated in the elaboration of 76 plans (the detailed list of sites can be found in Annex I of this report).

In this report, we present experience gained in this project in the form of recommendations for conservationists (and NGOs as well), who would like to take part in such work. We believe that nature conservation planning is a crucial issue in the future of preserving nature in Poland and in Europe.

Planning instruments in Poland

There are two types of planning instruments for Natura 2000 sites in Poland: ‘conservation measures plan’ and ‘conservation management plan’, depending on the actual needs (see differences and similarities in Table 1). When the area of a Natura 2000 site coincides with that of a national park, nature reserve or landscape park, it is also possible to integrate it into its conservation plans, thus to implement Natura 2000 conservation measures within the management plan of an appropriate national nature protection form.

Both the conservation measures plan and the conservation management plan are elaborated on the basis of the Polish Nature Conservation Act (2004). The procedure of preparing the plan involves the wide participation of all stakeholders. This is a requirement of the act to enable all private entities and bodies “that
are conducting activity in protected habitats or habitats of the protected species at the site” to participate in the preparation of the plan. Although the act itself does not describe precisely the form of this involvement, in practice, the so-called “Local Cooperation Group” is established. All the interested stakeholders of the particular site are invited to the group and to be the member of this teamwork as volunteers. The task is to gather all essential information and draft the plan; however, it is the responsibility of a coordinator chosen by tenders or, more rarely, by collaborators of the nature conservation services responsible for the site (Regionalny Dyrektor Ochrony Środowiska - Regional Directorate for Environmental Protection).

The Local Cooperation Group meets a few times. Firstly, to discuss the current state of knowledge concerning a particular site and to identify knowledge gaps, then to diagnose the condition of habitats, species and proposals of planning solutions. Documentation from each stage of the work is also available online. Comments from the group members should be sent to the coordinator of the group. Eventually, the final version of the plan is exposed to public consultation within a 21-day deadline and it is open to comments for everyone.

The process of planning is based on the following algorithm: identification of conservation objectives at the site → assessment of “conservation status” within the site using categories FV (favorable) - U1 (inadequate) - U2 (bad) → identification of threats (current and potential factors responsible for inadequate conservation objectives status or factors that create danger of changing proper state) → determination of conservation objectives defined as “appropriate step in the direction of “favourable status” → identification of conservation measures leading to reach goals.

Differences between conservation measures plan and conservation management plan are presented below:

<table>
<thead>
<tr>
<th>Conservation measures plan</th>
<th>Conservation management plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>• prepared for 10 years;</td>
<td>• prepared for 20 years;</td>
</tr>
<tr>
<td>• legal basis: order of regional director of environmental protection;</td>
<td>• legal basis: decree of Environmental Minister,</td>
</tr>
<tr>
<td>• obligatory for each Natura 2000 site with the exception of marine sites, sites covered by conservation measures plan or management plan elaborated for nature reserve or national park, sites of forest district, which have forest management plan that was evaluated during environmental impact assessment;</td>
<td>• non-obligatory;</td>
</tr>
<tr>
<td>• elaborated mostly for a whole Natura 2000 site, with the exception of marine sites and sites, where conservation is planned in other procedure;</td>
<td>• can be prepared for the whole Natura 2000 site or a part of it;</td>
</tr>
<tr>
<td>• elaborated with a view to implement</td>
<td>• the only planning instrument for Natura 2000 sites: marine areas, forest inspectorate area that has forest management plan that was evaluated during strategic environmental impact assessment;</td>
</tr>
<tr>
<td></td>
<td>• long-term conservation program can be changed during implementation only in particular cases</td>
</tr>
</tbody>
</table>
measures that are necessary for conservation objectives and are not questionable;

- includes only objectives to reach and tasks to implement for 10 years;
- it is a “to do list”, does not describe regulations and principles of operation;
- conservation with “small steps method”, model of “adaptive planning”: tasks prescribed for short period → verification of results-modification in case of conservation measures plan or preparation of full management plan;
- elaboration on the basis of current knowledge, completed through basic field works in standardized “monitoring observation” - with a goal to standardize description of each conservation objective, alternatively verification or identification of possibilities of activities implementation; without special researches and inventories - but if there is a need, appropriate research can be one of the tasks;
- can formulate conclusions for changes in current landscape plans, eliminating as far as it is possible “traps for investors” - situations, when spatial plan cannot be fully implemented due to law concerning Natura 2000;
- one part of conservation measures plan can be the identification of the necessity of elaboration and the base of conservation management plan.

- prepared on the basis of previous elaborated inventory and researches
- defines stable regulations and proceedings for a relatively long period;
- defines “boundary conditions”, which have to be fulfilled in landscape planning and activities carried out at the site with the aim not to harm the aims of Natura 2000 site;
- can determine regulations for development, technical and communication infrastructure (areas with and without restrictions);
- can determine frame conditions for the implementation of accomplished and planned projects likely to have significant effects on Natura 2000 site, and required compensation (reduces consequences’ expansion and time for future procedures of Environmental Impact Assessment);
- can provide conclusions for changing existing plans in spatial planning, eliminating entirely “traps for investors” - situations when spatial plans cannot be fully implemented due to restrictions connected with Natura 2000 sites
- for stakeholders active in the Natura 2000 sites, it provides predictability and reliability of conservation concerning restriction in protected area.

| Table 1. Characteristics of conservation measures plan and conservation management plan |
Despite the differences, the way of planning (participation of stakeholders, logical structure of the plan, relation to conservation status and particular characteristics and indicators, planning monitoring that verifies objectives) is the same.

In the following part of this chapter, we concentrate mostly on experiences and recommendations for the planning process of conservation measures plan, because this type of document is elaborated in most cases. However, the majority of rules described here can also be used in other management plans.

Where to find information concerning planning of conservation of Natura 2000 sites

1. The majority of conservation measures plans are prepared within the framework of the project “Elaboration of conservation measures plans for Natura 2000 sites in Poland”, funded from European sources, conducted by the central administration of nature protection - General Directorate of Environmental Protection (Pl Generalna Dyrekcja Ochrony Środowiska). Current information about the project should be published on a dedicated website. There have been attempts to create a special “platform of information and communication” in the frame of the project, the goal of which is to enable users to follow each step of the process and make comments and remarks.

2. Current terms for conservation measures plan dedicated for each site are available at the Regional Directorates for Environmental Protection (Pl Regionalna Dyrekcja Ochrony Środowiska, RDOŚ), which is responsible for each site. At each of 16 RDOŚ, there is a dedicated staff member, so-called regional planner, who coordinates the process of planning, and from whom information can be obtained on request.

3. Since planning is a public process, it has to be announced. It is worth following the website of each RDOŚ.

Recommendation: Each naturalist and conservationist, who is interested in conservation of Natura 2000 site, should try to access information and get involved in the process of planning.

Before planning - visit the site, know the site!

If you are to take part successfully in the conservation of Natura 2000 sites, you have to know the site well. For that you have to be there: visit it regularly, know its nature (familiarize with the environment), examine the most important and interesting places, recognize threats and think of ways to minimize their impacts.

Knowledge of the area and the most important places is necessary for a comprehensive and realistic approach toward planning and protection. The more precise our knowledge is, the better results we will achieve. Concrete knowledge about precious moor, for example, together with the knowledge about drainage ditch, is invaluable for the planning. In contrast, imprecise knowledge such as "there is possibly an alkaline moor at the site” is ineffective.
We recommend informing appropriate entities (e.g. owner/manager, nature conservation administration, responsible authorities, etc.) about new findings (e.g. presence of protected species, significant places, etc.) in written form. This helps to avoid receiving arguments like “...we did not know that the place is so valuable”. We also recommend the documentation of all visible threats at the site. We should remember to send documentation of our activities to the nature conservation administration. Even if the single intervention that we experience does not have any significant effects, its documentation adds to the description of problems. Conservation planning process is a time when you cannot avoid discussion about this kind of issues and thinking about solutions. Documentations on informing about threats are useful tools to combat arguments like “... we did not know about the problem”.

Naturally, it is worth trying to protect a site within the frames of different projects, i.e. within activities for nature conservation. Those partners who have experiences in such activities should probably be considered as lead partners. Nevertheless, “implementing actions in habitats and species habitats” is according to the national law, a premise to “create possibilities for participations in elaborating project of plan”.

Example:
The LIFE project concerning protection of xerothermic grasslands, implemented by Klub Przyrodników at the site PLH 320037 Dolna Odra enabled a complete description of all existing xerothermic patches with precise actions in the conservation plan. If this knowledge had not been available before planning, there would have probably not been enough time for researches to take into consideration all the xerothermic patches in the planning process.

For naturalist, who does care about Natura 2000 sites, these recommendations might be obvious. However, we would like to emphasize that it is important in the planning process to collect information about problems, threats and valuable places, species and needs of the site that create the “critical mass”. This sort of information is the most effective when they are not only collected but also delivered in writing to appropriate entities.

How to take part in the planning process?
1. Elaborating the plan, or parts of it, is often the task of different contractors. One way to prepare a good plan is to be the contractor itself - try to win the tender!

2. Most often, in the frame of the plan preparation, there is the so-called Team of Local Cooperation established with approximately 30 persons. This group should involve key stakeholders (i.e. people and institutions, which are directly affected by the plan or have influence on the implementation process of the plan and “people and entities that are making their business within habitat or habitats of species, which are objects of protection in the site”) and experts. It is worth taking part in the work of such a team. That means participation in 2-4 workshops with discussion (traveling expenses at own costs). It creates the best possibility to emphasize the needs of nature conservation. Additionally, only the members of the team are able to consult the current versions of the prepared documentations. We advise to inform administration of nature conservation about your wish to join such a team, especially about:
 - Taking part in the site activity connected with conservation objectives protection, or
 - obtaining data, information or knowledge that could be useful in the planning process.

3. Within the frame of the planning process, for instance a special website can be created as an “information-communication platform”, where members of Local Cooperation Team can see every plan, comment it and make remarks. It is good to provide comments from the beginning, therefore you can steer the work.

4. Everyone can make comments about the project plan during “public consultations” (in practice, the project is available on the Internet). For making remarks, usually a 21 days-time interval is given. At the end, there is also a list with comments describing in what way the comments will be included. Any suggestions or remarks are not accepted after the deadline.

For the participation in planning Natura 2000 site conservation, you should be prepared. We advise to get detailed knowledge on national legal regulation and management planning guidelines. It is useful to also familiarize with European regulations relevant for Natura 2000 sites (see suggested literature).

Each naturalist, who cares about a particular Natura 2000 site or sites, should try to participate in the planning process in one of the ways described above.

Understand Natura 2000!

Before taking part in conservation planning of the Natura 2000 sites, it is crucial to understand well what Natura 2000 actually is, what it protects, what it does not protect, and what relevant national and EU legislation it is connected to.
Knowledge about the extent of Natura 2000 is a key issue for the conservation of habitats and species protected through this network. Habitats and species not included in Natura 2000 site do not benefit, in principle, so much from this conservation regime. However, if one species (e.g. lesser spotted eagle) nests in the forest within the border of Natura 2000 site or feeds on the meadows beyond a Natura 2000 site, their habitats should also be protected. Understanding what can and what cannot be protected by Natura 2000 site is crucial. You should always consider if the site concerns “habitats” or “birds” and in what aspect. This defines what kind of conservation objectives we have to deal with (see below). One misunderstanding is an assumption that due to Natura 2000, you can preserve landscape or cultural heritage. You should remember that Natura 2000 cannot prevent any, even very negative changes, when they are neutral for the conservation objective at the site.

Nevertheless, such limitations can sometimes be overcome. Conservation planning can be a catalyst for holistic thinking. If designed correctly, conservation planning can preserve both natural and cultural values. It can provide a socio-cultural impulse for the region and have a positive impact. Such way of thinking about a site can influence other sectors - people can show greater care for other elements of heritage, not only about those, which are covered by European directives.

It is possible that such solutions and socio-cultural considerations can be our long-term goal, although they might be sometimes hidden. Conservation of Natura 2000 site is efficient and durable only when we build an agreement with stakeholders that have impacts on the site. Such a consensus can be a solid basis for efficient, local cooperation for real protection of the site in all its aspects. Such agreement, which constitutes a partial acceptance of ecological needs of species and habitats and of socio-economic needs, is the best solution for each Natura 2000 site. The key to success is when everyone understands the business potential of a well-preserved Natura 2000 site. An idea around which this agreement could be discussed further is local sustainable development. It can and should use i.e. nature values that are protected in Natura 2000 site and also ecosystem services, which however should not be harmed.

On the other hand, you should be conscious that the term “enabling sustainable development” can be in many situations mistaken and used as an excuse to avoid strict conservation of an area. Such interpretations should be criticized. Sustainable development is a development, which has limited boundaries resulting from needs of nature conservation. Not
every Natura 2000 site has to develop sustainably. Existing Natura 2000 site should induce the sustainable development of the surrounding regions.

It is not right to say Natura 2000 sites stands as an opposition to current nature conservation or even to compare “modern Natura 2000” with “old-fashioned nature conservation”. All known methods or forms of nature conservation - e.g. strict conservation, acceptance of natural processes, active conservation, renaturisation or nature-friendly development can take place at Natura 2000 sites.

Example:

Site of Community Interest (SCI) - Wrzosowiska Przemkowskie PLH2000015 is an area of work of the Local Activity Group “Wrzosowa Kraina” (Heath-land), which implements projects within the Leader Program. Local advertised regional product is i.e. heath honey. Conservation of European dry heaths (habitat 4030, main conservation objective of Natura 2000 site) means also the protection of the honey's base component. It is now the beekeepers’ business to keep heaths in good conditions. The heathland by Przemków is also a local tourist and landscape attraction. This place has attracted tourists not only because of the beautiful landscape, especially with heath in bloom, but also due to the delicious honey that can be purchased from local beekeepers during the trip. In winter, the taste of honey brings memories from the heathland.

During the preparation of the plan, you should “play the game”: the plan is elaborated for the conservation of species or habitats, which are the conservation objectives of Natura 2000 and are situated within the borders of this protected area. Workshops, meetings and discussions that take place throughout the planning process could be the beginning of building new activities towards local sustainable development.

Nature-friendly development, sustainable development, development of tourism and ecotourism are chances for local development – these are opportunities to sustain existing Natura 2000 sites, not only from an environmental, but also from a social point of view. However, social aspects alone cannot justify deviation from the conservation of species and habitats. The main purpose of the Natura 2000 sites is to preserve endangered species and habitats whereas sustainable development can be seen as an extra and very important asset.

The borders of Natura 2000 sites

The current borders of Natura 2000 sites in Poland can be found on the maps that are available on the state agency's website (http://natura2000.gdos.gov.pl/natura2000/) or as WMS layers (http://wms.gdos.gov.pl/geoserver/wms?). It can be used with Geoportal¹ (http://www.geoportal.gov.pl) or with some GIS software (in both cases borders can be displayed with topographical map, ortophoto and land cadasters).

¹ Geoportal is a Polish tool, which is part of the implementation of the INSPIRE. Similar tools function in other EU members, as well.
The general border view of Natura 2000 sites in Europe is available also on the website of European Environment Agency (http://natura2000.eea.europa.eu/).

Planning the conservation of Natura 2000 sites is actually a different process from designation. In principle, it should be accepted that the shape of the site is determined and established by those borders, which were sent as vectors by Poland to the European Commission. With the conservation measures plan it is not possible to change the borders of the site or provide more details with it somehow. Changing the borders of the Special Area of Conservation requires a decree from the Minister of Environment after its acceptance from the European Commission. Changing the borders of the Site of Community Interest requires the decision of the European Commission. The conservation measures plan is approved by the decree of the Regional Directory of Environmental Protection (RDOŚ) and cannot replace the decisions above. Generally, those situations should be avoided, where discussion concerning conservation of Natura 2000 turns into a discussion concerning correctness of designation.

However, when the plan is being prepared, some postulates can appear for the corrections of borders crucial for site conservation. It can be, for example, enlarging the site in order to provide critical protection for endangered species. Task to make such correction can be included in the plan as one of the conservation measures (although implementation of such correction requires a separate procedure).

It is necessary to remember that:

1. Enlarging the site can be included as a “to do task”, if there is justification for it from a conservation standpoint. Enlarging the Natura 2000 site would probably not meet objections from the European Commission, but the sooner it is submitted, the sooner it can be implemented (e.g. request for “habitats areas” enlargement sent to the European Commission could yield with results more than 6 years later).

2. “Specifying borders” of Natura 2000 site (e.g. drawing and adjusting borders to land lots, forest subunits, etc.) is possible only when the alteration would not exclude fragments important for conservation objectives. This kind of change cannot be made within the same conservation measures plan - it requires full procedure of changing Ministerial decree or a decision from the European Commission.

3. Excluding particular parts from a Natura 2000 site is generally difficult and can be allowed only in exceptional cases. Certainly, the exclusion cannot be derived from political, social, or economic motives. It is possible only under conditions of delivering “overriding public interest” if:
- it did not have high nature value in the day of “designation of the site” – in the case of Poland it is the date of accession to the European Union (1 May 2004),
- it has not received such value after that day,
- it is not important according to the integrity of the site (e.g. it is not necessary for protection of values at the neighboring site).

This type of change requires informing the European Commission.

Examples

During works on conservation plan for the small Natura 2000 site PLH220010 Hopowo, it turned out that the current version of borders accepted by the European Commission was drawn by hand on a general map. In fact, in the field it was identified that a protected feature - a dystrophic lake that is a habitat for swamp minnow (*Phoxinus percenurus*) was in fact located outside the borders of Natura 2000 site. A proposal of border alteration was prepared based on the field details. The application concerning border changes was submitted to GDOŚ and then to the European Commission.

Similar situation occurred with the site Natura 2000 PLH020013 Sztolnie w Leśnej (ang Adits by Leśna) that protects hibernation places of bat species in adits of old mines. During the preparation of the conservation plan, it occurred that the current borders accepted by the European Commission did not include any of the 9 adits, which were the habitats of the bats. The request concerning border changes was submitted to GDOŚ and then to the European Commission. In both cases it is expected that changes in the borders of the sites will be accepted.

Example

The Ministry of Environment, while delivering to the European Commission a conclusion of detailed borders for Natura 2000 site 2000 PLH240005 Beskid Śląski, excluded a small part of the area on the slope of Szyndzielnia as a proposal of Bielsko-Biała city council. The aim was to enable an investment in the field of tourism and skiing, which was important for the development of the city. After the detection of protected habitats exclusion - patches of beechwood and forests of slopes, screes and ravines - the European Commission did not accept the proposal of changes. As a consequence, Poland had to send a revised version that included the previously excluded area.

As a member of the Local Cooperation Team, you could and also should make comments and conclusions that are based on the above mentioned criteria. Especially when site enlargement is needed, such conclusion should be included in the plan as one of the tasks. You should strongly insist on that no political, social or economic reasons induce exclusion of sites from the Natura 2000 network. You should point out that it is not possible according to either the Polish or the European legislation.

Conservation objectives (protected features) at the Natura 2000 site
As it is well known, Natura 2000 site is not a “protected area” but a “site of conservation”. It is an area, where not everything is protected, but only specific ecosystems (habitats) and habitats of concrete species. These selected ecosystems or species are the so called “conservation objectives”, which are the bases of the conservation measures plan.

The “habitat site” (SCI-SAC), Art. 6(1) of the Habitats Directive requires that Member States “establish the necessary conservation measures involving, if need be, appropriate management plans specifically designed for the sites or integrated into other development plans, and appropriate statutory, administrative or contractual measures which correspond to the ecological requirements of the natural habitat types in Annex I and the species in Annex II present on the sites.” It means that all habitats and species (mentioned in Annex II of the Habitats Directive, transposed also to the corresponding decree of the Ministry of Environment), which occur at the site, should be the conservation objective, and therefore should be included in conservation measures plan. The aim of the Natura 2000 site is to reach and maintain the “favourable conservation status” of the habitats and species. However, this is usually not the case for the sites classified as “D” from a certain species’ or habitat point of view according to the Standard Data Form (SDF) - these sites have non-significant presence of certain species or habitats. The list of conservation objectives of the site often consists of a list of habitats and species defined in the Standard Data Form with letter A, B, C (general grade). Nevertheless, with new scientific information and data, new habitats or species of the nature directives can be found at the site (and they are of minor importance), which are not included in the SDF. They should also be regarded as conservation objectives. Member States should actualize the SDFs (it is expected that SDFs should be updated every 6 years).

If habitats or species disappear from the site, the interpretation depends on the cause of this situation. In case of that the disappearance of species or habitats is permanent and unavoidable (e.g. due to climate change, unpredictable natural disaster, fire, etc.), such habitat or species is not regarded as a conservation objective anymore. If all conservation objectives disappear in such manner, the Natura 2000 site could even be taken out from the network. If disappearance of species or habitat was a result of insufficient conservation (lack of appropriate measures towards natural succession, e.g. overgrowth of meadows), there is a requirement for its restoration. No political, social or economic conditions can lead to the removal of conservation objective from the SDF.
Generally, bird species are not direct conservation objectives at the “habitat site”. Nevertheless, birds and all other groups of species can indirectly benefit from the conservation of habitats - if they are considered as so called “typical species” for the habitat (see below). In this case, reaching the favourable conservation status of such species also means reaching the favourable conservation status of the habitat.

At the “bird site” (SPA), it should be kept in mind that the Birds Directive contains more annexes than the Habitats Directive listing bird species, for which the Natura 2000 site is established. Annex I of the directive is only a part of such a list as the second part consists of migratory species, which are included in the Polish Ministerial decree establishing Special Protection Areas (SPAs).

In Poland, the decree of the Ministry of Environment specifies a selection of conservation objectives for the “bird sites” declaring that the conservation objective is a species from Annex I of the directive or any of the migratory bird species:

a) which represents at least 1% of the breeding species population at national level, or
b) which represents regularly at least 1% of the migrating population of the migratory species, or
c) which appears regularly at least with 20,000 individuals of wetlands migratory species during migration or overwintering, or at least with 10,000 pairs of one or few migratory marine species, or
d) which appears regularly altogether with at least 5000 of white storks or 3000 common cranes, or 3000 species of birds of pray, observed during spring and autumn migration period, or
e) the area is one of the most important state breeding areas for endangered species in the EU, or
f) regularly appears globally and is endangered.

It should be assumed that the list of conservation objectives is the list of species marked in the Standard Data Form for a site (general grade) as A, B or C (but not D).

Similarly to SCIs, if a species disappears from the site, interpretation depends on causes of this phenomenon and on whether it was possible to avoid it. If species extinction is permanent and impossible to counteract (e.g. due to climate change, unpredictable natural disaster, fire, etc.), this species is no longer regarded as a conservation objective. If all conservation objectives disappear, from the Natura 2000 site due to unavoidable causes, the site can even be eliminated from the network. Nevertheless, if species extinction is a consequence of insufficient conservation
(including also lack of appropriate measures towards natural succession, e.g. overgrowth of meadows), there is a requirement for its restoration.

The process of preparing a plan, which determines conservation objectives of the site, involves analysis on the basis of available data and also the SDF.

These habitats and species that have had importance since 1 May 2004 should be considered as conservation objectives. Therefore, in the planning process, a list of conservation objectives of the Natura 2000 site (list of species and habitats for which conservation should be planned) should be defined as follows:

<table>
<thead>
<tr>
<th>Species and habitats with A, B, C grades from the SDF</th>
<th>Newly found species and habitats, for which that site has crucial significance (should be included in the SDF with A, B or C grade)</th>
<th>Species and habitats that were incorrectly included in the SDF (species or habitats that disappeared as a consequence of insufficient conservation after 1 May 2004 cannot be erased)</th>
<th>Conservation objectives of a site</th>
</tr>
</thead>
</table>

If you participate in the planning process, you could and should make comments and remarks based on the above mentioned rules. In particular, you should inform the RDOŚ about habitats and species that are not included in the SDF and which should be considered as conservation objectives. These objects should be included in the process of conservation planning. You should also pay attention to attempts that narrow down some conservation objectives that is against the above mentioned rules.

The SDF is not sacred

The Standard Data Form of the Natura 2000 site is the best possible description of the site (at the time of drafting). Nonetheless, actually hardly any of the descriptions are really complete. As a result of growing knowledge about the site, the form can and should be supplemented, and all possible errors should be corrected.

The European Commission expects that SDFs for Natura 2000 sites will be supplemented, detailed and corrected at least once in every 6 years. All changes resulting from the actualization should be accepted. For example, if it appears that the number of a species is smaller than estimated in the previous version of the SDF, the change will not give evidence about bad conservation of the area. Therefore, it cannot be the basis for any fine. It will be quite different, however, if the number of one of the conservation objectives will continuously present a declining trend.
Making changes in the SDFs requires precise description concerning causes of trend alterations. Differences in number of species or habitats in the next versions of SDFs are not automatically interpreted as a negative numerical or coverage trend, although of course it can indicate a decline. However, such a straightforward assessment of the situation is never automatic.

Planning process of Natura 2000 conservation usually involves tasks that details knowledge about this site (inventories, critical analysis of various sources of information, etc.). Very Often conservation planning of the site results in a proposal to improve, refine or supplement the SDF. This is normal!

Example:
During working at the project of the conservation measures plan for the Natura 2000 site PLH260010 Lasy Suchedniowskie, it was found that the xerothermic grasslands described in SDF (habitat code 6210) are located beyond the border of the Natura 2000 site, additionally with a poor structure. Probably, this habitat was described in the SDF by mistake. As a result of further research however, three rare xylobionthic beetles species were found (species that depend on decaying wood) in the forest - *Boros schneideri*, flat bark beetle *Cucujus cinnaberinus* and *Rhysodes sulcatus*. This discovery means that this area is a key-site for conservation of this species in Poland. Therefore, beetle species were considered as conservation objectives whereas xerothermic grasslands could be excluded. Appropriate changes in the SDF were accordingly indicated.

If you participate in the planning process, you could and should make remarks and conclusions based on the above described rules. You should pay attention to attempts to minimalize the extent of nature conservation due to manipulation of the SDF content.

Content of fieldwork for conservation measures plan

There is a limited budget and time available for the elaboration of the conservation plan, and therefore it can happen that not all conservation objectives can be identified and described in the field. In the process of planning, a debate should be made about what kind of issues constitute a priority for investigations in the field and what can be postponed. However, work in the field is the most important part of planning. As a participant of planning process, you should make efforts to convince the executor of the plan to conduct field inventory as detailed as possible.

In particular, situations when there is no time for fieldwork, should be strongly criticized (e.g. order preparing documentation for the plan in autumn time with winter deadline).
Existing data concerning the site should be used in the conservation planning. Nevertheless, the credibility and completeness of each source of information and each set of information should be assessed. While analyzing the available information, it is worth thinking about the research methodology, available research time, habitat interpretations, etc.

Where gaps of knowledge and inventories are detected, the procedure of plan preparation allows implementation of complementary fieldwork (e.g. inventory for some elements of nature or assessment of its condition). First, those issues should be recognized, which potentially have the biggest impact on the “planning effect” – namely, issues that rely on the need of undertaking active conservation measures, modifying current management of the site, etc.

One task described in the frame of the plan should be the supplementation of information for issues that cannot be recognized during project plan preparation (e.g. making inventory or detailed analysis).

During participation in the planning process, you can and should make remarks and conclusions concerning the quality of available documentation, inventories and also conclusions connected with making inventories and its range. Such conclusions are desirable at the early stages of planning. Only then it is possible to influence the content of the predicted fieldwork.

Vision of the ‘favorable conservation status’ of the conservation objective

In principle, the aim of the Natura 2000 network should be to achieve a ‘favorable conservation status’ for conservation objectives and the permanent preservation of this state. The vision of the favorable conservation status should be based on standards and indicators, developed in a standardized way for the whole country and identical to the parameters and indicators used for
environmental monitoring. More detailed indicators for rating the various parameters are determined by each EU Member State individually.

The obligation that results from the Habitats Directive is to keep or restore favorable conservation status of habitats and species at the level of the country and biogeographic region (similar obligations exist in relation to the Birds Directive). The planning process should determine what the role is of the particular Natura 2000 site in achieving this goal. Site conservation objectives should “optimize” this role.

In Poland, it is assumed that conservation status of species and habitats will be determined obligatory with the same model of standards and indicators in each particular Natura 2000 site during the plan elaboration. In addition, in the frame of a habitat and species monitoring carried out since 2007, conservation statuses for many species and habitats have been determined (results are published on the website: http://www.gios.gov.pl/siedliska/).

Criteria of conservation statuses for habitat or species within Natura 2000 sites are determined in the decree of Ministry of Environment.

The conservation status for species in Natura 2000 site is defined through the parameters given below:

1) parameter 1: population;
2) parameter 2: habitat;
3) parameter 3: habitat conservation possibility

Each of the parameter is classified as: FV=favorable, U1=inadequate, U2=bad. In case of lack of data, the category ‘XX=unknown’ is used. FV is indicated with green, U1 with orange or amber and U2 with red.

Parameter 1: ‘population’ is assessed according to the following scale:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FV (Favorable)</th>
<th>U1 (inadequate)</th>
<th>U2 (bad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Population</td>
<td>The number of individuals is stable over a longer period (natural fluctuations may occur) and the population uses the potential of the area. Age structure, fertility and mortality rate do not probably differ from the standard.</td>
<td>The number shows a slow decreasing trend, or is much lower than the potential possibilities of the area otherwise would suggest, or structure, reproduction or mortality rate are anthropogenically disturbed.</td>
<td>The number shows a strong decreasing trend, or age structure, fertility and mortality rates are distorted in a way that there is a threat such a trend in the near future occurs.</td>
</tr>
</tbody>
</table>

For the assessment of natural conditions and disturbances of population features, a separate set of parameters is used, accepted for national environmental monitoring, and based on scientific knowledge (these research methods are published on the website: 18
http://www.gios.gov.pl/siedliska/). It is worth mentioning that narrowing down the parameters to the so called ‘fundamental parameters’ only is incorrect.

In practice, for each species a different and suitable set of indicators is used. It can be direct population indicators (number of individuals, fertility, mortality), or indirect indicators of population (e.g. number of trees colonized by xylobiont species, occurrence frequency of rare insect species, etc.)

Parameter 2. ‘habitat’ is assessed according to the following scale:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FV (favorable)</th>
<th>U1 (inadequate)</th>
<th>U2 (bad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Habitat</td>
<td>The size is large enough and the quality sufficient for long-term survival of the species.</td>
<td>The size and the quality is so degraded anthropogenically that is not optimal for the species.</td>
<td>The size is too small or the quality does not enable long-term survival of the species.</td>
</tr>
</tbody>
</table>

For the assessment of size and quality of habitat of species, there are different sets of indicators in use for each species. They are accepted for national environmental monitoring, based on the scientific knowledge (this research methodology is published on the website: http://www.gios.gov.pl/siedliska/). In practice, habitat is assessed with indicators, which focus on the size of the available habitat (whether it is large enough for the species) and its quality. Indicators are of course different for each species - they can describe for instance the number of breeding places, accessibility of nourishment, shelters availability, etc. Indicators should display features that are factors achieving good population condition and show features of habitats that are crucial for its survival.

Parameter 3. ‘habitat conservation possibility’ of is assessed according to the following scale:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FV (favorable)</th>
<th>U1 (inadequate)</th>
<th>U2 (bad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Habitat conservation possibility</td>
<td>Lack of significant negative impact, or probable threats in the future; no negative changes in population and habitat. Preservation of species within the perspective of 10-20 years is almost certain.</td>
<td>Preservation of species within 10-20 years perspective is not certain, but probable as long as existing negative impacts and predictable, moderate threats are prevented.</td>
<td>Preservation of species in 10-20 years will be difficult, strong negative trends in population and habitat with predictable, hardly avoidable threats in the future.</td>
</tr>
</tbody>
</table>
The combined evaluation of conservation status is a result from 1-3 parameters by the following scheme:

1) if only one of the three parameters is U2, grade = U2;
2) if situation is not like in point 1), but at least one from the three parameter is evaluated as U1, grade = U1;
3) if situation is not like in point 1) or 2), but two or three parameters have XX, the grade = XX;
4) if situation is not in the above points (i.e. three parameters have FV or two parameters have FV and one has XX), global grade = FV.

State of conservation status of habitats in Natura 2000 site is determined with parameters as follows:

1) parameter 1: habitat area;
2) parameter 2: structure and function;
3) parameter 3: habitat conservation possibility.

Each of the parameter is evaluated in the scale: FV=favorable, U1=inadequate, U2=bad. In the case of lack of data ‘XX=unknown’ is applied. FV is indicated with green, U1 with orange or amber and U2 with red.

Parameter 1: ‘area of habitat’ is evaluated according to the following scale:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FV (favorable)</th>
<th>U1 (inadequate)</th>
<th>U2 (bad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Habitat area</td>
<td>It is not decreasing, it is not anthropogenically fragmented.</td>
<td>It indicates a slow decreasing trend or it is anthropogenically fragmented.</td>
<td>It indicates a quick decreasing trend or it is strongly anthropogenically fragmented.</td>
</tr>
</tbody>
</table>

If habitat occurs in a form of dispersed patches due to natural conditions (e.g. relief), it is not evaluated as anthropogenic fragmentation.

Parameter 2: ‘structure and function’ is evaluated according to the following scale:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FV (favorable)</th>
<th>U1 (inadequate)</th>
<th>U2 (bad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Structure and function</td>
<td>In good state, lack of significant disturbances, typical for habitat ecological processes, favorable state of typical species.</td>
<td>Minor disturbance, minor structural disturbances, disturbance of typical habitat ecological processes, decreasing biodiversity, impairing functions, inadequate state of particular typical species.</td>
<td>Significant, severe disturbances, e.g. lack of proper management, impairing structure, lack of typical level for habitat ecological processes, notable decrease of biodiversity, loss of function, bad state of typical species or clear impairment of the composition of species.</td>
</tr>
</tbody>
</table>
There are different indicators used for the assessment of structure and function of the habitat. They are accepted for national environmental monitoring, based on the scientific knowledge (research methodology is published on the website: http://www.gios.gov.pl/siedliska/). It is worth mentioning that it is incorrect to narrow down parameters only to the so-called ‘fundamental parameters’.

In practice, the parameter ‘structure and function’ is evaluated on the basis of indicators. Composition of those indicators can be different for each habitat (adapted to ecological specificity), although many indicators for different habitats can be similar or even the same. Certain indicators describe the conditions of habitat (e.g. water condition, land use), whereas other indicators describe the direct structure of the habitat. ‘Typical species” status (if the typical species of the habitat is indicated) should also be used as an indicator.

Different indicators describe particular features of structure or/and processes and factors that shape that habitat and influence its functioning. The value of each factor is assessed in the scale FV-U1-U2-XX. Fundamental and ancillary indicators are to be distinguished. The value of a parameter is determined by the value of particular indicators in that way that it cannot be more elevated than the lowest value of the fundamental indicator. The value of the ancillary indicators influences the parameter’s value, but they do not absolutely determine it. Nevertheless, it is not allowed to rely solely on the fundamental indicators’ evaluation! Indicators should specify those features, which are crucial for persistence and “quality” of the ecosystem, within that the preservation of the complete biodiversity is connected with that particular ecosystem.

Parameter 3: ‘habitat conservation possibility’ is evaluated by the following scale:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FV (favorable)</th>
<th>U1 (inadequate)</th>
<th>U2 (bad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Habitat conservation possibility’</td>
<td>Lack of threats and negative trends. Preservation of habitat in a non-deteriorated state in a 10-20 years prospect is almost certain.</td>
<td>Preservation of habitat in a non-deteriorated state in a 10-20 years prospect is not certain but it is probable if existing threats are eliminated.</td>
<td>Preservation of habitat in a non-deteriorated state in a 10-20 years prospect will be very difficult: advanced processes of recession, strong negative trends or significant threats are present.</td>
</tr>
</tbody>
</table>
Total assessment of the conservation status of is a result from parameters 1-3, based on the following scheme:

1) if at least one from three factors is evaluated as U2, evaluation = U2;
2) if situation is not like in point 1), but at least one from the three parameters is evaluated as U1, evaluation = U1;
3) if situation is not like in the above points, but two or three parameters are evaluated as XX, evaluation = XX;
4) if situation is not like above (i.e. all three parameters are evaluated as FV or two parameters receive FV, and one XX), global evaluation = FV.

Generally, vision of favorable conservation status of habitats or species should include the following elements:

- number of individuals of species or habitat range at the site does not decrease, or increases, simultaneously anthropogenic fragmentation of the habitat is prevented;
- fundamental ecological features (e.g. water condition and peat creation process; flooding of riparian forests) of habitats are preserved or reestablished;
- appropriate management of semi-natural habitats that require such measures (e.g. meadows, pastures) are provided;
- biodiversity connectivity is ensured at the sites
- key elements of the structure (e.g. contribution of old trees and dead wood in the forest) are preserved or restored
- habitat preservation is necessary for the full life cycle of protected species at the site in an appropriate state.

A favourable habitat status means a healthy, well functioning ecosystem, with high biodiversity. The vision of ‘favorable conservation status of habitat’ coincides with the vision of healthy ecosystem that was applied in conservation before the implementation of Natura 2000.

The vision of ‘favorable conservation status’ should include and accept natural variability of ecosystems (e.g. for forest you should not aim for a precise forest stand composition of species, but rather to a forest with particular ecological character, for instance, accepting fluctuations of some tree species). Similarly, the vision should include and accept natural and typical ecosystem ecological processes and their results.
In some cases, the vision of 'favorable conservation status of habitats' will be dynamic like naturally functioning mosaic of different habitat types, such as dynamically formed dunes, which include the habitats of the dunes, dune heathland, dune depressions, etc. Particular habitats will change their location and the surface, but the living character of the whole system ensures that the existence of each of the habitat type is complexly preserved.

The vision of 'favorable conservation status of habitat' should emphasize those structural features of the ecosystem that are “litmus paper” of its natural value. For instance, in terms of forests, these features would be dead wood (for the development of natural groups of xylollient species, the coverage of dead wood should usually be 30-40 m^3/ha, but such resources should cover only 20-30% of the whole forest area), and the presence of thick and old trees. Regarding river habitats with *Ranunculion fluitantis* and *Callitricho-Batrachion* vegetation, this feature would be hydromorphological diversity (natural riverbed).

Noteworthy is the idea of the so-called 'typical species' of habitats. Habitats should be regarded as ecosystems - typical species are species essential for the functioning of the ecosystem determining its local character and also important for saving the ecosystem's biodiversity. This species are also beyond "Natura 2000".

For example in river with *Ranunculion fluitantis* and *Callitricho-Batrachion* vegetation (habitat 3260), typical species are specific water plants (common water-crowfoot, flowering rush) and fish (e.g. brown trout, grayling, common barbel).

In xerothermic grasslands (habitat 6210), typical species are specific plant species and invertebrates.

In beech forests (habitat 9130) typical species include for instance, woodpeckers: their hollows are used by numerous bird species. For typical species we could consider - *Hericium coralloides* (rare fungus that colonizes decaying beech wood) or lesser stag beetle *Dorcus parallelipipedus* - a beetle species typical for natural forests, which larva lives in fungus infected wood.

An additional rule is to consider species as typical species, which act as a 'litmus paper' for natural values of particular ecosystems. During the plan preparation, there is a place for evaluating what kind of species should be regarded locally (at the specific Natura 2000 site) as typical for each habitat. If a conservation objective is one habitat, than the aim of the conservation is to i.e. preserve or restore the favorable conservation status of its ‘typical species’.

![Flowering Iris sibirica – typical species for the 6.410 habitat.](image)
Example:
Natura 2000 site PLH060098 Wrzosowisko w Orzechowie protects European dry heaths (habitat 1030). During the preparation of conservation measures plan for the site, Klub Przyrodników made the proposal that woodlark should be considered as a ‘typical species’. It is typical for heathlands and has high concentration there.

The aim of the Natura 2000 site PLH060105 Maśluchy is to protect species-rich Nardus grasslands (habitats 6230). Klub Przyrodników requested the acknowledgement of certain plant species including *Botrychium multifidum*, fragrant orchid (*Gymnadenia conopsea*) and wolf’s-foot clubmoss (*Lycopodium clavatum*) (described in the SDF as local ‘floral curiosity of grasslands) as typical species while preparing conservation measures plan.

The vision of ‘favorable conservation status of species’ should emphasize the features of habitats or species, which are key issues for these particular species. In this case, the whole life cycle should be taken into account. For instance, the hermit beetle requires an appropriate number of old trees with rotten wood that stands in short distance. In the case of the European fire-bellied toad the following features are essential: shallow warm ponds for mating, deeper ponds used in summertime, abundance of shelters for winter and undisturbed migration route without barriers between winter and summer quarters. For wolf, extensive forests rich in game (base of prey), non-fragmented sites including hidden places for reproduction without dangerous elements (e.g. roads with heavy traffic) are essential.

For many species and habitats important elements of favorable conservation status are suitable water conditions. This issue is especially important because if it is included in the plan, it will not only serve nature conservation targets, but also the Water Framework Directive and will therefore imply activity for administrators of the water bodies.

Generally, the vision of ‘favorable conservation status’ of most of the habitats and species is not in variance with the vision of practical and economic use of ecosystems - although it could require some modifications in the direction to provide place for crucial natural processes and elements of structure.

‘Favorable conservation status’ for the majority of habitats and species does not lead to conflict with the vision of ecosystems managed by natural processes. On the contrary, in Europe there are many examples indicating that passive conservation, especially in forest, can lead to excellent favorable conservation state. This type of conservation is thought not to be appropriate for semi-natural habitats (e.g. meadows), which requires specific form of management.

During the participation in the planning process, you can and should make comments and conclusions about the vision of favorable conservation status’ of conservation objectives - e.g. by specifying species that are indicators of some features of the site (‘typical species’). Certain elements of structure that are now in limited numbers (e.g. dead wood in a forest) should also be accented by proving the necessity of including such natural ecological processes as an element for favorable conservation status of the habitat in the plan.
Example

Indicators for “local” assessment of conservation status of 9160 habitat (Stelario-Carpinetum oak-hornbeam forest) in Natura 2000 site Drawa Great Forests, with proposed planning follow-up in case of unfavorable status

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Indicators</th>
<th>Favorable FV</th>
<th>Inadequate U1</th>
<th>Bad U2</th>
<th>Planning: U1, U2 follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is not anthropogenically fragmented – surrounding subdivision from this potential biochore (>90% border) represents habitat as well</td>
<td>50-90% borders with other forest subdivisions from the same potential biochore is also a border with other patches of habitats</td>
<td><50% of the border with other forest subdivisions from the same potential biochore is the border with other plant communities, not with other subdivisions of the habitat</td>
<td>Anthropogenic fragmentation can be a premise for planning to restore forest stands, which are fragmented to oak-hornbeam forests</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific structure and function</th>
<th>Characteristic floristic combination of the undergrowth</th>
<th>Typical natural habitat (including regional specificity)</th>
<th>Distorted in comparison with typical habitat in the region</th>
<th>Dominated by atypical species for oak-hornbeam forests</th>
<th>Even if an indicator value is negative, it is not necessary to plan conservation activities – when re-establishing natural structure of the undergrowth, natural processes should restore these values or other ecosystem features should be managed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species that dominate in particular levels of plant communities</td>
<td>On each level, typical habitat species dominate in equilibrium</td>
<td>On each level, typical habitat species dominate, natural relations are disturbed</td>
<td>On one or more levels, one alien plant community species is dominating</td>
<td>In case of domination of pine or spruce see comments concerning 'Alien species in the stand'. In case of domination of successive species (birch alder) – succession should preferably be ruled by natural succession. Restoration of natural domination on other levels should also be left to natural processes.</td>
<td></td>
</tr>
<tr>
<td>Contribution in forest stand of deciduous species (without species of early succession stage)</td>
<td>>90%</td>
<td>50-90%</td>
<td><50%</td>
<td>In case of the domination of pine or spruce in trees stand – see remarks concerning indicator: 'Alien species in the stand’. In case of domination of successive species (birch, aspen) – succession should preferably be ruled by natural succession.</td>
<td></td>
</tr>
<tr>
<td>Contribution of hornbeam</td>
<td>>10% of forest stand</td>
<td><10% of the forest stand</td>
<td>Missing in the forest stand along with</td>
<td>Even if an indicator value is negative, it is not necessary a condition to plan conservation activities – increasing the</td>
<td></td>
</tr>
<tr>
<td>Contribution of ‘early successional’ of tree stands</td>
<td>brushwood</td>
<td>number of hornbeam should be left to ecological processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10% present</td>
<td>10-30% or not present</td>
<td>>30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In case of domination or increased contribution of species with early succession, preferably leave this issue to natural succession. Such species could be important for biodiversity e.g. birches for resources, aspen for some insects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alien species in the stand</td>
<td><10%</td>
<td>10-50%</td>
<td>>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative indicator value can be a condition to plan to remove those species, however with that consideration that they can be important for biodiversity connectivity (especially old trees with dens, etc.).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alien species in trees stand and brushwood</td>
<td><1% and do not increase</td>
<td><10% and do increase</td>
<td>>10% and spreading continously</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative indicator value can be a condition to remove alien species. However, in some places alien species can have cultural and landscape value.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead wood resources (in total)</td>
<td>>10% thickness of living trees</td>
<td>3-10% thickness of living trees</td>
<td>< 3% thickness of living trees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In case of negative indicator value, leave dead trees and trees in bad conditions, especially from deciduous species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead wood standing or lying >3 m long and >50 cm thick</td>
<td>> 5/ha</td>
<td>3-5/ha</td>
<td>< 3/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In case of negative indicator value, leave dead trees and trees in bad conditions, especially from deciduous species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of forest stands (occurrence of old trees)</td>
<td>>10% contribution of trees older than 100 years</td>
<td><10% contribution of trees older than 100 years and >50% contribution of trees older than 50 years</td>
<td><10% contribution of trees older than 100 years and <50% contribution of trees older than 50 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consequently, wait for the forest stand to get old.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural regeneration of tree stand</td>
<td>Yes, with abundant hornbeam, reaction to forest gaps and exposure to light</td>
<td>Yes, but only single or without contribution of hornbeam</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Even in case of negative indicator value, it does not necessarily mean to undertake activities toward stimulating renewal, wait for spontaneous renewal. Only negative evaluation at the whole Natura 2000 site would require action.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical and spatial structure of</td>
<td>Diverse; >50% of the area covered with forest stands,</td>
<td>Uniform old tree stand or diverse structure with dense</td>
<td>Uniform young tree stand < 10% covered by old stands fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural processes should be preferred.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td>occurrence of forest gaps and exposure to the light</td>
<td>old tree stand with coverage of 10-50% of the area</td>
<td>Invasive alien species in the undergrowth and ground cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not present</td>
<td>Present but at least 1 species, not strongly invasive</td>
<td>Present with more than 1 species, or species is strongly invasive</td>
<td>It can be a condition for planning species removal, which should depend on the feasibility of activities. Discussion with floral team should be done. Consider limiting activities causing disturbances (e.g. stand thinning, log-rolling, tourism).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansive native species (apophytes) in the undergrowth, e.g. species of clear cuttings, including e.g. blackberries</td>
<td>Very limited</td>
<td>Contribution increased but species not widely distributed</td>
<td>Widely distributed</td>
<td>Preferably leave to natural, spontaneous processes. Consider avoiding activities that deepen disturbance (e.g. stand thinning).</td>
<td></td>
</tr>
<tr>
<td>Destruction of undergrowth and soil associated with logging</td>
<td>Not present</td>
<td>Single traces</td>
<td>Numerous traces</td>
<td>Preferably leave to natural, spontaneous processes. You should consider avoiding activities that deepen disturbance</td>
<td></td>
</tr>
<tr>
<td>Other disturbances (dilapidation, littering)</td>
<td>Not present</td>
<td>Occur but not significantly</td>
<td>Strong</td>
<td>Preferably leave to natural processes, with the exception of littering- for which plan to remove garbage. Consider avoiding activities that could deepen disturbances.</td>
<td></td>
</tr>
<tr>
<td>Status of key biodiversity species typical to the local habitat</td>
<td>Favourable (FV) status of all species</td>
<td>Inadequate (U1) status of some species</td>
<td>Bad (U2) status of some species</td>
<td>Based on the need of suitable species – they will be determined on the basis of flora and fauna conservation reports</td>
<td></td>
</tr>
<tr>
<td>General structure and functions</td>
<td>All principal indicators evaluated as FV, the rest at least as U1</td>
<td>All principal indicators evaluated at least inadequate U1</td>
<td>One or more principal indicators evaluated as U2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future prospect</td>
<td>Preservation of habitat in non-deteriorated state in 20 years is clearly achievable</td>
<td>Preservation of habitat in non-deteriorated condition in prospect of 20 years is probable</td>
<td>Preservation of habitat in non-deteriorated condition in prospect of 20 years is very difficult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General assessment</td>
<td>All three parameters evaluated as FV</td>
<td>At least one from three indicators evaluated as U1, no U2</td>
<td>One or more indicators evaluated as U2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Should every conservation objective be brought to ‘favorable conservation status’? Conflict of requirements of different conservation objectives

According to Article 6(1) of the Habitats Directive ‘For special areas of conservation, Member States shall establish the necessary conservation measures (...) which correspond to the ecological requirements of the natural habitat types in Annex I and the species in Annex II present on the sites’. Article 2(2) of the Directive reads as follows: ‘Measures taken pursuant to this Directive shall be designed to maintain or restore, at favorable conservation status, natural habitats and species of wild fauna and flora of Community interest’. According to Article 1, special area of conservation means a site of Community importance designated by the Member States through a statutory, administrative and/or contractual act where the necessary conservation measures are applied for the maintenance or restoration, at a favorable conservation status, of the natural habitats and/or the populations of the species for which the site is designated (see also chapter 2).

This obligation concerns not only maintaining ‘favorable conservation status’ for each species and habitat at every Natura 2000 site, but rather ‘optimization’ of contribution from each Natura 2000 site to the accomplishment of favorable conservation status of particular habitats and species in the country. However, during the elaboration of Natura 2000 sites conservation in Poland, it was assumed that achieving favorable conservation status of conservation objectives, expressed with specific parameters and indicators, should be a long-term goal of conservation planning of each site. Deviation from this assumption is possible only when reestablishing the parameters to ‘favorable’ is impossible due to objective reasons (e.g. natural habitat’s condition). Short-term goals, e.g. conservation measures plan, should be identified in the light of long-term visions.

Parameters and indicators defining the state of conservation objectives should be subject to monitoring for measuring progress in achieving these goals.

Assessing conservation status by specific parameters and indicators shows "critical points" for the achievement of the favorable status of species and habitats, and shows the most urgent needs for conservation measures. Many indicators can in fact be improved by such action. Obviously, it does not apply to all indicators. For instance, to improve contribution of old trees in forest stand, you have to wait, but any conservation activity can accelerate this process. Contribution of dead wood is also a good example (in some countries there are special piles of wood for stag beetle built due to lack of old oaks; in some countries trees were deliberately damaged to increase local microhabitats for xylobiotic species).

Naturally, in the course of work on the conservation planning of a particular area of a Natura 2000 site, you should take into account the distinctive features of local populations of species and habitat resources and adapt specific indicators of conservation status to it and specific conservation goals based on those indicators. While working on a plan, there are often working algorithms of planning inference prepared on whether conservation activities in particular patches of natural habitat (e.g. separation of forest) are possible or not according to the indicator values. Not every case of “inadequate conservation status” should induce taking action to achieve favorable status with active conservation methods. In many cases, it is better (and cheaper) to leave this to natural processes.
Example:
Klub Przyrodników argued that the conservation measures plan for the site PLH240014 Graniczny Meander Odry (Border Meander of Odra River) should be based on the conception of designation and preservation of so called 'corridor of free migration of the river', where natural changes in the river stream and the morphology of the riverbed dominate. This concept should be implemented cross-border, also in the Czech Republic (the river of the site is a state border).

In practice, it happens that the requirements of different conservation objectives may be conflicting. For instance, in vast complex of forests, most of the conservation objectives rely on old woods with natural features, but one conservation objective, the red-backed shrike, prefers clear cuttings. Raised bog (habitat 7110) overgrows bog woodland (habitat 91Do). Restoration of open surface of the bog by tree removal may be necessary, although both habitats are priority Annex I habitats and both are conservation objectives.

Such conflicts should be resolved in the planning process. To do this, it is necessary to identify the role of the Natura 2000 site in the whole Natura 2000 network, and therefore select the option that contributes better to the accomplishment of favorable conservation status of nationwide habitat or species resources.

Example:
Natura 2000 site PLH 220040 Łebskie Bagna consists of two nature reserves that protect remains of raised bogs, mostly overgrown by forests. In the conservation plan, it was proposed to reconstruct raised bogs with tree cutting from the area on approximately 80 ha. As a result, another habitat - bog woodland (habitat 91Do) will be destroyed on purpose, as the restoration of the complex raised bogs (habitat 7110 and 7120) is more important in this case.

By participating in the planning process, you could and should make observations and conclusions based on these principles. Each case of inadequate conservation state of species or habitat at the site should be considered, but not each of them requires immediate active conservation measures. Generally, the best solution is to leave ecosystem to natural processes. The aim of the Natura
The 2000 network is to accomplish a favorable conservation status of national resources of species and natural habitats, not each species and habitat at every site. By planning the conservation of a particular site, you should correctly interpret what role the site has in the network and its contribution in the achievement of this general goal.

Detection of threats

Existing threats are mostly factors that are responsible for inadequate (U2) or bad (U1) statuses for particular conservation objectives, parameters and indicators of conservation status. Potential threats are factors that in the future can deteriorate the status of conservation objectives, especially leading to U1 or U2 statuses.

One of the threats can be low awareness of society concerning the site and its conservation. Another danger is insufficient knowledge about conservation objectives, which increases the risk of making mistake during the conservation planning process.

Planned undertakings determined in local land use plans, development strategies or simply planned by authorities or other entities also belong to potential threats.

Probably the list of threats identified by Natura 2000 conservation planning will not only be used directly for the plan, but also during an impact assessment for plans and undertakings in the future. Therefore, the list of threats should include all dangers that can result from potential interactions.

The list of threats in the planning should, in the more advanced step of planning, serve as a list of factors. According to Article 6(2) of the Habitats Directive, the plan is prepared for to prevent all conditional deteriorations of habitats and significant disturbances of species. The plan should also evaluate if and in what conditions the current land use planning can be developed without causing disturbances at the Natura 2000 site.

Example:

In Special Protected Area PLB320009 Zalew Szczeciński, the expansion of kite surfing lead to disturbance of birds. The best place for this sport is a bay that is a place of concentration for thousands of ducks, especially for greater scaup (Aythya marila). In the conservation plan, it is necessary to find solutions for minimizing this impact.

While participating in the planning process, make sure that every factor, which should not occur on the area, has been articulated as actual or potential threat for particular conservation objective (species or natural habitats).

Planning under incomplete knowledge

Despite the possibility to complete knowledge about the conservation objectives due to the conservation planning process of the Natura 2000 site, this knowledge will often be still incomplete. Conservation of habitats and species are frequently planned without knowing
exactly where they occur. Such a planning is difficult, but possible. It must be based on the thesis that our knowledge is incomplete and we have to estimate how much we do not know. The major mistake that can be made - and in practice this happens often - is to limit the planning only to those elements of nature that we know.

For instance, we know that in one Special Protected Area the conservation objective is the boreal owl, whose population is assessed as approximately 30-40 breeding pairs. Nevertheless, we know the location of only two trees with hollows, which are used by this species. Conserving only these two trees and establishing protective zones around these elements are of course insufficient. Proper solution is the conservation of potential habitat of the owl (elder spruce forest stands) and of key species (e.g. black woodpecker), which dig potential hollows. Efficient procedures should include saving trees with hollows, regular examination of forest stands from the point of view of boreal owls’ occurrence preceding forest works and exclusion of this part from exploitation.

Another example can be the Molinia meadows. In a vast complex of meadows, several very valuable patches of Molinia meadows are located. Only few patches are known, but we presume that there are more of them, although we do not have an inventory. It is not an adequate solution to extend conservation regime of the Molinia meadows (mowing in early autumn). This should be restricted only to the known patches, even if we planned additional activity to make new researches. Correct conservation should support late mowing and preservation of proper water conditions in the whole complex.

Without knowing the exact location of mating places of fire-bellied toad, we can still care for the preservation of small ponds in the agricultural landscape and for preservation of such features, which are favored by this species. Not knowing whether any particular tree is inhabited by the hermit beetle, we can still look for a row of old trees in the landscape (and plant new rows as well) and take care of efficient conservation of all old trees with hollows and decaying wood.

This means that in the absence of sufficient knowledge about the conservation objectives the solution is to protect ‘more’. Paradoxically - the less we know, the more radical the conservation plan must be. Of course in some cases such activity could be too excessive - but it is just the price one must pay for the lack of knowledge. This approach probably raises a lot of controversy in the planning process. This means, after all, "more than you really need" costs and "stronger than they really need" restrictions. It is however necessary as long as knowledge concerning Natura 2000 site is insufficient and we want to preserve efficiently its natural values.

In this situation, support can be found in European law standards. Article 6(2) of the Habitats Directive (can be used also for SPA requirements to avoid any deterioration of natural habitats and significant disturbance of protected Natura 2000 site species) applies to deterioration due to human activity and due to insufficient conservation measures. This requirement is not limited to habitats and species, whose location is known, but concerns the whole resources of habitats and species at each site. Also, as repeatedly stressed in this publication, the precautionary principle requires prevention of threats and implementation of appropriate conservation measures regardless whether everything is inventoried and significance of the threats is fully demonstrated or not.
By participating in the planning process, explain issues of the completeness/incompleteness of identification of particular conservation objectives on the area. Try to identify the level of knowledge completeness. If there is lack of data concerning conservation objectives, do not accept that conservation is restricted to only those elements that are known. Apply such measures that preserve also locations of habitats and species, which have not been fully assessed.

Conflicts

Generally, in the planning process there are always existing and potential conflicts related to the conservation plans.

Practice shows that most of the conflicts are based on misunderstandings and are easy to solve by simply offering clarification. The conservation planning process is of course an excellent place to do that. For other conflicts, it seems that restrictions, which are necessary in order to conserve the Natura 2000 site, are not significant, and it is possible to negotiate and solve them during the preparation of the plan. However, some conflicts are a real clash of material interests and an easy solution can be hard to reach. In the planning process, such situations cannot be hidden.

The conservation of the Natura 2000 sites cannot be placed in a model that “avoids conflicts”. There are hard duties of conserving the area - it must be planned and executed so as to avoid deterioration of protected habitats and significant disturbances of protected species. It must also carry out the mission, which the site has in the preservation of the habitats and species. However, while completing this mission, there is a wide scope to seek solutions, although it is obviously difficult - this is probably the hardest part of the planning process. It is necessary to apply basic principles of conflict resolution: a fair hearing and understanding of the arguments of all parties, the inclusion of all parties and all arguments with respect. It may be useful to train the experts in mediation and conflict resolution.

Example

At one Natura 2000 site, forest inspectorate had reservations about the forest management restrictions in relation to the conservation area. In fact, the conservation objectives are swamp forests and peat bogs distributed among the forest parts, which are not used for commercial purpose. The conservation objectives require only a zone about 50 m around the peat in which clear cuttings are not allowed. For the rest of the large area between the peat bogs, forest management may be continued as before and does not adversely affect water conditions of the bogs. The conflict, in fact, practically does not exist, and fears were the result of a misunderstanding about the conservation requirements.

Example

At the Natura 2000 site Ostoja w Ujściu Wisły (Wistula Mouth) PLH220044, one of the conservation objectives is the grey seal. This is the only place on the Polish coast where this species occurs permanently. Local fishermen complain that the seals eat out the fish (including
valuable salmon) from the nets, and that this phenomenon is locally so intense that it results in unprofitable fishery activities. Fishermen suggest the seals should be hunted and their numbers should be limited to 3-5 individuals, which according to them would be the "acceptable number". The conflict is real. From the perspective of the Natura 2000 site established for the seal, any interference (i.e. causing the destruction of the habitats, significant impact on the population or significant disturbance), which would violate Art. 6(2) of the Habitats Directive, is impossible. Any solution of such therefore cannot be included in the plan. Solutions may be realized in the use of alternative fishing gear (that prevent seals from eating fish out from the nets), or possibly, compensating fishermen for their losses.

Conflict is not bad. It is a problem that requires searching for solution. By participating in the planning process, do not try to conceal conflicts but articulate and explore them. It is the first step to solve them. Do not yield to temptation of 'shortcuts': avoid conservation plans that ignore conflict situations, or plans, which are conflict-free, but ineffective in conservation.

Determining the objectives of conservation measures

The vision of 'Favorable Conservation Status' "is an idealistic and long term vision". On its basis in the process of plan elaboration, FCS should be a realistic vision to achieve in 10 years, which should be the objectives of the conservation measures plan. However, in the case of conservation plan, it is adopted for 20-year planning period.

Such objective should be a step towards bringing the conservation objective towards 'Favorable Conservation Status"- and this step should not be too small. However, the Birds or Habitats Directive do not contain any requirements about a term, in which the general objective of Favorable Conservation Status of habitats and species is to achieve. Nonetheless, the following should be taken into account:

- EU leaders pledged to implement the so-called '2020 goal' to restore nature and halt the loss of biodiversity "as far as feasible". The deadline of 2020 should therefore be also taken into account as the deadline for achieving/restoring FCS for conservation objectives within the Natura 2000, as far as it is technically feasible;
- The Water Framework Directive requires the achievement of Favorable Conservation Status of all "water bodies" conservation objectives at the Natura 2000 sites by 2015.

Well-formulated objectives are specific and possible to verify. The common mistake is to set the activity as a goal itself. The objective cannot be "striving for improvement ...", but it should be to achieve any particular state. A well-stated objective has to be (based on the so-called principle of SMART):

a. Simple and understandable,
b. Measurable, or at least verifiable,
c. Achievable,
d. Realistic,
e. Time based (embedded in a specific term) - usually less than 10 years.
When formulating the objectives related to water conditions, be aware that they will automatically be called "Environmental objectives for water" and should be considered in water management planning. In this case, you should take special care that the plans are sufficiently specific and precise - they are clear and accurate enough, so in that planning it is clear what elements of water quality are to be achieved and/or maintained.

Aims to achieve a Favorable Conservation Status are a "mandatory goal package". In addition, targets for 'socio-economic use of the area' may be optionally formulated - for example, use the area for particular forms of tourism in the communication to the society about the importance of the sites' conservation needs, etc. However, such objectives cannot violate the core base - the effective and ambitious conservation of the area of habitats and species. The purpose of the discussion on this topic should be not only a compromise between conservation and other aspects of the site (some changes in the land use in exchange for some deviations from the conservation requirement), but a consensus (full conservation and modified, new management from which nature conservation benefits). Finding such solutions is of course one of the most difficult points of the planning process.

Example
At the Natura 2000 site PLH080014 Nowosolska Dolina Odry, the following conservation objectives have been proposed for habitat 91F0 (Riparian mixed forests):

- Ensuring or preserving passive protection (exclusion of stands from exploitation) for the most valuable, representative patches covering at least 25% of the habitat’s area, maintaining biodiversity of the site including preservation of FCS of typical species like the middlespotted woodpecker (*Dendrocopos medius*) and great Capricorn beetle (*Cerambyx cerdo*).
- Provide for the entire site and each major forest complex permanent contribution in patches of habitat stands older than 100 years at least at the level of 70%.
- Protection of the Odra River’s hydrological regime, which guarantees to maintain the favorable status of "water conditions" indicator including to enable the occurrence of a spring period of at least 30 days a year with water level exceeding 400 cm at water gauge in Nowa Sól.
Example
At the Natura 2000 site PLBo80002 Dolina Dolnej Noteci, the following conservation objectives have been proposed for whooper swans and wild geese wintering at the site:

- Securing the sustainability of water conditions suitable to the species on the area between the embankments of the Warta and Noteć Rivers, specially focusing on shallow, extensive backwaters in particular in the period from November to April.
- Enabling flooding for at least 90 days a year.
- Evaluating of mortality rate due to power lines in order to take mitigation actions.

By participating in the process of plan preparation, you can and should request that the objectives of the conservation measures plan are defined in an "ambitious but realistic" way, respecting the above-mentioned obligations. You should resist the tendency to limit the conservation objectives due to the anticipated financial, legal and organizational difficulties. Effective conservation of Natura 2000 is obviously a difficult and challenging task, but it is our civil duty towards the European 2020 Biodiversity targets. Long-term vision of the Natura 2000 site should be a consensus between nature conservation and socio-economic aspects and not a compromise between conservation and land use planning.

You should ensure that conservation objectives are set out in a way that is "verifiable" (and in general are SMART), and not only in the form of vague entries.

As far as the water bodies are concerned, it is worth emphasizing the connection of conservation objectives of Natura 2000 site with environmental objectives for water and the deadline for their implementation.

Determination of conservation activities

Conservation activities have to provide a clear activity plan for the fulfillment of the objectives. During the planning conservation activities, you should determinate the type of conservation activities, the range of work if appropriate, conditions for activity execution, location of implementation, the term or duration and frequency of the implementation, the costs of the implementation, the entity responsible for their implementation and monitoring activities. Pointing the responsible entity you may take into account:

- Supervisors of the area,
- Entities cooperating in the conservation of the Natura 2000 site (e.g. entities acting on behalf of the state, water management, forest management authorities, etc.),
- Agricultural beneficiaries of direct payments from the European Union, within the scope of the requirement of compatibility,
- Other parties with their consent.
Conservation plan activities can also be located outside the site, if it is necessary for the conservation of natural habitats and species in the Natura 2000.

Protective activities may include, in particular:
- performing certain single or repetitive tasks of active conservation, especially if the current state of the conservation objectives of the site has been assessed as inadequate or bad,
- implementation of modifications in the current management of natural habitats and habitats of species, if the present state of the conservation objectives has been evaluated as inadequate or bad/maintenance of certain methods of natural habitats and species management, if the current state of the conservation objectives has been assessed as favorable,
- completion of knowledge on the conservation objective if the conservation status is not possible to evaluate.

Measures of active conservation required at the Natura 2000 site should be conducted in most cases by a supervisor of the area, e.g. a forest inspector from the National Forests Authority. Another entity, especially non-governmental, can also take this responsibility (e.g. tasks can be undertaken by non-governmental organization in a frame of the project), but only with the consent of a supervisor. In such situation, the supervisor does not take responsibility for the implementation of essential activities.

Modification of land use methods can be undertaken by each stakeholder (person). Determination of planning should be limited to modifications that are really useful from the conservation objectives’ point of view (according to parameters and indicators of the conservation status). Management of the site that does not include land use modifications can be considered as an activity that can have significant negative impact on the Natura 2000 site, which, according to Article 33. of the *Nature Conservation Act*, is against the law. The Regional Directorate of Environmental Protection can impose to suspend such activities on the basis of Article 37. of the act. For the farmer, the introduction of appropriate modifications will become an element of cross-compliance rules (*cross compliance*) as part of their agricultural land use, which is in compliance with EU law requirements and conditions the receipt of EU subsidies to agricultural land.

Example

In the project of conservation measures plan elaborated for the Natura 2000 site PLH260010 Lasy Suchedniowskie, there is a proposal for modification in forestry practices according to the need of conservation of habitats type: 9110, 9130, 9170, 91P0 and xylobiotic beetles. It states that:

1. Within Natura 2000 site there was a ‘valuable nature area’ selected, for which it was assumed that:
 - suspension of cuttings is foreseen in the forest management plan with the exemption from felling IVa, IVd with 10-15% intensity of output state (planting 0.8-1.0) for 10 years (reduction of planting not bigger than 0.1-0.2),
 - active deadwood should be left in an amount that is not a threat for forest stand,
- the maximum amount of passive deadwood should be left with the target deadwood thicker than 10 cm >10% reserve of forest stand,
- trees that are thicker than 40 cm should be left. That thickness has 10% of forest stand thickness.

2. For the rest of the forest of the Natura 2000 site, forestry activities should be carried out in the traditional way, with an exception of habitat 91Do (elimination from forestry activities with 20 m buffer zone around patches) and 91E0 (elimination from forestry zones 40+40 m from streams, rest as group felling or shelter wood felling, leaving part of trees more than 40 cm thick).

Example
In the Special Protection Area PLB320003 Dolina Dolnej Odrzy, hunting of wild geese species and hunting of wild boars and wild geese in crane resting places during autumn period is a serious problem due to disturbance of birds. In the elaborated conservation measures plan, it is proposed to establish five ‘tranquility zones’, that are excluded from birds hunting zones during the whole year and excluded from hunting during 1 March - 30 November, the spring and autumn migration and breeding time. Opening the site for hunting in late autumn and in winter (1 December-28 February) allows the elimination of big games like wild boar and the monitoring of its wild populations. Due to these established zones, the conservation objectives should achieve Favorable Conservation Status, whereas these restrictions should not influence hunting significantly at the site. Such zones cover only few percent of the SPA area and are located in unapproachable parts of the area, which are not in use. Therefore, it has no impact on the economy of the region.

Example
In the project of conservation plan prepared for Special Protection Area PLH300012 Lasy Puszczy nad Gwą (wielkopolskie voivodship), it was proposed to establish a so called ‘zones for anthrophobe species’ (species that avoid human) in the forest. In these zones, the following activities are planned:

- forest management should contribute to the achievement of at least 40% of the forests to be at the age of 80 years and 17% at the age of over 100 years (rates increased in relation to the indicators set as a target for the whole Natura 2000), this target is to be reached in 20 years,
- reduction of forest work within the borders of this zones during birds breeding (from 15 February to 1 August),

Although canoeing is a generally nature-friendly kind of tourism, at some sites it must be limited for water fauna conservation.
• halting any works and treatments in stands over 80 years during this period,
• restriction of entry and residence permits within the jurisdiction of forest inspectorate in connection with the Forest Act,
• no designation of tourist trails in these zones.

On the same area, one of the problems is the potential increase in the intensity of canoeing, which is quite likely due to advertising and many organized trips, especially in the river Rurzyca. To prevent risks and protect the common golden eye, mergansers, Eurasian eagle owl and other bird species associated with rivers and their surroundings, the followings are proposed:
• for the river Rurzyca, which is protected as a nature reserve, water sports should be limited in the period of 1 July - 31 December with a maximum of 50 kayaks per day, whereas in the period of 1 January-30 June with a maximum of 20 kayaks per day
• on other rivers, the number of kayaks should be monitored and if the number increases significantly (for May-August more than 100 kayaks per day on the Gwda river and more than 50 on other rivers), actions should be made.

Measures towards maintaining specific methods of land use on natural habitats and habitat of species are sometimes necessary, e.g. in the case of habitats and species dependent on agriculture. Such conservation tasks in the plan can also address non-state actors, such as farmers, but there is no obligation for them in a legal sense to implement a particular way of farming. For the farmer, these records will be part of the application of cross compliance as part of their farms – this is a compliance with EU law and it is a condition for receiving EU subsidies to agricultural land. Any management in a way that destroys the protected habitat will potentially result in exclusion from the right to any payments from the EU budget, and at the same time, may be a so-called damage to the environment, which is associated with a legal obligation to repair and compensate.

The farmer is not required to use his/her agricultural land. The responsibility of the state is to encourage him to continue such use. Several agri-environmental programs have been designed to support farming practices. The problem is that agri-environmental payments may not be the gratification for carrying out the obligatory duties that resulted from the law. Records of the plan should be skillfully constructed - on one hand, to define effectively the conditions for conservation objectives, and rightly confine boundary conditions of such activity, while on the other hand, not to result in excluding the possibility of using agri-environmental programs. Under specific conditions of particular areas, the standard agri-environmental programs (tailored for average conditions in the country) may also prove to be ineffective. As a result, you cannot assume that agri-environmental programs are a panacea for all problems of Natura 2000 protection appearing at the interface of agriculture.

Example
At the Natura 2000 site PLH120018 Gorce, one of the major problems is the preservation of mountain clearings, which requires extensive pasturage. Because of the difficult mountainous conditions, significant land fragmentation due to ownership and a significant bureaucratic burden associated with participation in agri-environmental program, maintaining usage of
clearings, even with the support of agri-environmental program, is not profitable for their owners. Some of them were trying to participate in the program but then eventually had to withdraw from it.

In some cases, the good protective effect may create another, national nature conservation form within Natura 2000. You can use this approach when for the effective protection of conservation objectives at the Natura 2000 site, you need a package of regulations from one of the national forms. For example, establishing a nature reserve on the river is necessary to restrict the kayak tourism, which is harmful to the conservation objectives of this site. Establishing part of the forest as a nature reserve is the easiest way to exclude it from an economic use, which is desirable for the conservation of natural habitats. However, this possibility should not be abused of. Conservation of the Natura 2000 site should not be reduced only to postulation on the creation of other forms of nature conservation within the site.

Example:
During the discussions on the program of local cooperation elaborated for Natura 2000 site PLH300012 Rogalińska Dolina Warty, it was stressed that for effective conservation of the site, it is necessary to establish nature reserves for the most valuable old riverbeds and some parts of the forest. This excludes these fragments from the forest management and the old riverbed from the pressure of angling.

One activity provided in the conservation measures plan - if needed - can be to carry out research or inventories. It is advised to elaborate such a need, especially when the lack of knowledge is critical for the effective conservation of the conservation objectives.

The program of conservation measures should ensure achievement of the described objectives. You cannot restrict the necessary measures in the view of legal, organizational or financial difficulties. Effective conservation of the Natura 2000 site is our duty, regardless the difficulties we encounter when pursuing protection. The conservation measures plan is a tool to find a way to overcome such difficulties.

Example
In the pilot study of conservation for the Natura 2000 site PLC200004 Puszcza Białowieska, regarding the conservation of one butterfly species (The Danube Clouded Yellow Colias myrmidone), the following activities were planned: cutting shrubs and trees from active and old tracks Hajnówka-Białowieża (90%, 2-3 times) and then altering mowing in 2-3 years with leaving shrubs of broom.

By participating in the planning process, you could and should make remarks and conclusions based on the above mentioned principles.

Monitoring
Monitoring is recorded as one of the protective actions in the conservation measures program. It is essential to design a local monitoring program, using methods relevant to local needs in such
a way that it provides "warning signals" with regard to potential threats to the conservation objectives (for example, initial signs of deterioration of conservation objectives are detected). You should monitor:

- parameters used to determine the conservation objectives;
- factors threatening the conservation objectives, and the parameters that are most sensitive to the identified threats (they can be used for early warnings, indicating that the state of the conservation objectives is getting worse);
- parameters and indicators of conservation status of species and habitats that are based on the standard methodology for monitoring of natural habitats and species – established throughout Poland and adopted in the state nature monitoring.

Monitoring has to provide data to the supervisor for reporting on the Natura 2000 site. Appropriate monitoring should be recognized as one of the planned conservation measures.

By participating in the planning process, you could and should make remarks and conclusions based on the above mentioned principles.

Indications of necessary changes in the land use plans

In the process of conservation plan elaboration, existing plans in urban planning, concerning the site or documents that could have significant negative impact on the sites, have to be analyzed.

In case of detecting negative influences, such as proposals for those elements included in studies or plans whose implementation can harm or create risk of significant negative impact on Natura 2000 site, changes have to be implemented. Instructions could also be prepared in order to be used during elaboration of changes in studies or plans for the implementation of conservation.

Example
In the project of conservation measures plan for the Natura 2000 site PLH240016 Suchy Mlyn it is indicated that:

- in an existing urban plan elaborated for one community, it is necessary to exclude possibility of building the area next to the Pilica river. The construction development is against the requirement to preserve Favorable Conservation Status for fish species that need the natural hydromorphology and regime of the river;
- in the spatial planning, a change of planned afforestation should be made. Currently, this area covers protected natural habitats that cannot be afforested.

By participating in the process of planning, you could and should make comments and proposals indicating that the records of existing studies and plans are incompatible with the protection of Natura 2000, and explain which records should not be presented in the study and plans for the future.
Logic of the planning

A well-written conservation plan/conservation measures plan has a strictly defined logical framework:

- For each of the identified risks of the conservation objectives, a list of counteracting activities should be scheduled. It should also set a target of the conservation measures plan that eliminates or reduces the threat.
- The vision of Favorable Conservation Status should refer to specific parameters and indicators of conservation status of a species or natural habitat. They should be the same as those that are used for monitoring of the habitat or species.
- Objectives of the conservation measures plan should be determined so as to improve reaching the strategic objective, which is the favorable status of the conservation objectives.
- The objectives of the conservation measures plan should logically address the current state of conservation objectives and refer to all identified risks.
- Scheduled tasks should serve the implementation of operational objectives. For each objective, you need to plan an activity and each of the activities should aim to achieve one of the objectives.
- The plan’s objectives and activities must be written in a concrete and verifiable way in order to aid the determination whether and to what extent objectives are achieved or activities implemented. The purpose may not be described as "striving for...".
- If the obstacle of the planning is lack of knowledge about all or some of the conservation objectives, supplementing this knowledge should be one of the operational objectives, and necessary research or inventories as one of the tasks should be undertaken. At the same time, in such situation, the proposed conservation must be "redundant" in accordance with the precautionary principle (you cannot wait with conservation planning for the necessary research).
- Monitoring must be designed in a way that allows assessment of implementation and achievement of objectives of conservation measures plan.
- Monitoring should also be designed to provide information on the conservation status of resources of species or habitats within the Natura 2000 site. This condition should be evaluated on the basis of criteria and indicators adopted for the species or type of habitat in the national monitoring (this should be obvious since under the same parameters and indicators the objectives of the conservation measures plan should be constructed).

By participating in the planning process, you could and should make remarks and conclusions based on the above mentioned principles.

Important European rules

According to Article 6(1) and 6(2) of the Habitats Directive and the Birds Directive, Poland has a duty to:

- avoid the deterioration of natural habitats and the habitats of species as well as significant disturbance of the species for which the Natura 2000 sites have been
designated (that concerns deteriorations that are both a result of human activity or lack of implementation of proper conservation);

- undertake appropriate steps for the ecological needs of the conservation objectives that lead to preservation or restoration of Favorable Conservation Status of conservation objectives.

These responsibilities define the overall objective of both the protection of Natura 2000 sites and its planning. According to Article 6(2) of the directives, conservation obligations are made immediately after establishing the ‘bird area’/approval from European Commission of the ‘habitat area’. With the implementation, you cannot wait until the plan of the conservation site is ready or the research and expertise are prepared. The obligation to take proactive actions can therefore be part of the detailed and timely planned program of activities.

All authorities and entities that represent the state have to, within the frame of their competences, implement this objective. A special role is played by the supervisor of the Natura 2000 site that is directly responsible for the achievement of these objectives. S/he is responsible for drawing up appropriate plans and organizing effective cooperation of respective holders.

Planning instruments of Natura 2000 (conservation measures plan of Natura 2000, conservation plan of Natura 2000 or an approach in adequate range of other conservation plans) are tools that could and should be helpful for the supervisor.

Further rules and regulations derived from European legislation apply when planning the conservation of a Natura 2000 site - these are presented in the beginning of this publication. Particularly important is the “planning character” of the precautionary principle: undertaking conservation measures should be required only if the existence of a causal link between threatening factor and the expected negative changes in the environment is sufficiently possible. If there is uncertainty towards the existence or extent of the risks, you should take protective measures regardless whether the risks are already thoroughly assessed or not. Thus, protective measures should be employed; restrictions in the name of nature conservation could and should be implemented without waiting for solid and conclusive evidence of negative effects. You cannot accept the risk of insufficient conservation of habitats and species, but you can accept the risk of “overprotection”.

How to use the plan?

- The conservation plan of the Natura 2000 site, which is established by the Ministry of the Environment, is an act of common law established by the Regional Director of Environmental Protection conservation measures plan. Implementation of the elaborated and accepted plan is a responsibility of the body responsible for conserving of the Natura 2000 site as well as of the entities working on behalf of the state. From them, you can require information on the implementation of the plan. Lack of implementation breeches European law, which in relation to other countries has already been confirmed by the Court of Justice of the European Union.

- If any actions inconsistent with the arrangements of the conservation plan within the Natura 2000 site are undertaken, the Regional Director of Environmental Protection, as a supervisor of this area, is required to order the immediate suspension of the activity
according to Article 37(2) of the Polish Nature Conservation Act, and take the prescribed time limit activities necessary to restore the previous state of the site, its parts or the protected species.

- The conservation plan cannot be a source of generally applicable prohibitions - this can only be enforced by the law. However, Polish law (Article 33 of the Nature Conservation Act) introduces a prohibition of activities that may, alone or in combination with other measures, have a significant adverse impact on the conservation objectives of the Natura 2000 site. This includes in particular degradation of the natural habitats or habitats of species of plants and animals for which the conservation site is established and negative effect of the species for which Natura 2000 has been designated or degradation of the integrity of the Natura 2000 site or its connectivity with other sites. The plan, although it cannot alone prohibit anything, can specify what kind of activities might be considered as inconsistent with the articles cited above.

- For the farmer, the stipulations of the plan will become part of cross-compliance of the agricultural economy of European environmental requirements. Compliance with these requirements is a condition for receiving EU subsidies to agricultural land and other payments from EU sources, such as agri-environment payments. In practice, in the case of non-compliance, a farmer will first receive relatively small financial penalties, but further inconsistency with these requirements would result in loss of entitlement to payment.

- Established conservation plan or conservation measures plan for the Natura 2000 site - as a valid act of the law - creates a framework for other prepared plans. Local development plan or forest management plan cannot be inconsistent with the plan drawn up for the conservation of Natura 2000. Possibility of conflicts should be examined during strategic environment impact assessment.

- We should require the Regional Directorate of Environmental Protection, forest inspectorate, and other stakeholders that are working on behalf of the state to implement everything that is stipulated in the plan. Lack of execution of the planned activities could potentially be considered a violation of obligations under Article 6(1) of the Habitats Directive and Article 3(2) and 4(4). If there is a deterioration of the protection of protected habitats and species as a result of not implementing the provisions of the plan, it would be an obvious breach of the conditions of Article 6(2) of the Habitats Directive.
Keep in mind!

1. The plan may also concern locations outside the Natura 2000 site – up to the area still necessary for the preservation of the conservation objectives of the site.

2. List of the threats determined in the plan will be used for qualifying activities and plans during the complete environmental impact assessment for the site. Activities identified as "potential threat" will normally require such assessment. It is therefore necessary to introduce to the 'list of threats' entries that will show potentially harmful types of activities - in the future it can help to justify the requirement of the precise assessment.

3. If the threat determination is included in the conservation plan, it is not an exemption of obligation to prepare the impacts assessment on the Natura 2000 site. The exemption applies only for the undertakings, that serve directly and strictly for the protection of conservation objectives.

4. Objectives of the plan in relation to water conditions will become mandatory environmental objectives for water in terms of the requirements of the Water Framework Directive - according to the European law, there is an obligation to achieve them by 2015, unless the proceedings in accordance with the Directive foresees derogation from the term (but in no case later than 2027). This requirement of European law was not yet properly transposed into Polish law.

5. The assignation of the plan will be mandatory for the farmers as cross compliance. Violation of such arrangements will result in financial sanctions for the farmer about receiving direct payments. It is therefore important to include such amendments that would give possibility to use these restrictions.

6. If anyone violates the restrictions of the plan, the administration of nature conservation has to, under the Polish law, order the suspension of action and reconstruction of the earlier state. It is therefore important to establish in a plan a record that enables application of this regulation.

7. A monitoring system, which would generate "warning signal" in the case of 'something wrong' with conservation objectives, should be included in the conservation plan.

It is worth reading:

Annex I

Plans of Natura 2000 sites used as a base of experience presented in this report. Code PLB indicates SPAs, code PLH indicates SCIs (future SACs), code PLC indicates site with combined SPA&SCI status.

<table>
<thead>
<tr>
<th>Site code</th>
<th>Site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLB020006</td>
<td>Góry Stołowe</td>
</tr>
<tr>
<td>PLB040002</td>
<td>Bagnienna Dolina Drwęcy</td>
</tr>
<tr>
<td>PLB080002</td>
<td>Dolina Dolnej Noteci</td>
</tr>
<tr>
<td>PLB120008</td>
<td>Pieniny</td>
</tr>
<tr>
<td>PLB140004</td>
<td>Dolina Środkowej Wisły</td>
</tr>
<tr>
<td>PLB140011</td>
<td>Bagno Całowanie</td>
</tr>
<tr>
<td>PLB140013</td>
<td>Ostoją Koziennicka</td>
</tr>
<tr>
<td>PLB200005</td>
<td>Puszcza Augustowska</td>
</tr>
<tr>
<td>PLB220004</td>
<td>Ujście Wisły</td>
</tr>
<tr>
<td>PLB220005</td>
<td>Zatoka Pucka</td>
</tr>
<tr>
<td>PLB220010</td>
<td>Bielawskie Biota</td>
</tr>
<tr>
<td>PLB240001</td>
<td>Dolina Górnjej Wisły</td>
</tr>
<tr>
<td>PLB280010</td>
<td>Zalew Wiślany</td>
</tr>
<tr>
<td>PLB300017</td>
<td>Ostoją Rogalińska</td>
</tr>
<tr>
<td>PLB320001</td>
<td>Zalew Kamieński i Dzwina</td>
</tr>
<tr>
<td>PLB320003</td>
<td>Dolina Dolnej Odry</td>
</tr>
<tr>
<td>PLB320005</td>
<td>Jezioro Miedwie i Okolice</td>
</tr>
<tr>
<td>PLB320009</td>
<td>Zalew Szczeciński</td>
</tr>
<tr>
<td>PLB320016</td>
<td>Lasy Puszczy nad Drągą</td>
</tr>
<tr>
<td>PLB990003</td>
<td>Zatoka Pomorska</td>
</tr>
<tr>
<td>PLC080001</td>
<td>Ujście Warty</td>
</tr>
<tr>
<td>PLH020004</td>
<td>Góry Stołowe</td>
</tr>
<tr>
<td>PLH020006</td>
<td>Karkonosze</td>
</tr>
<tr>
<td>PLH020044</td>
<td>Stawy Sobieszowskie</td>
</tr>
<tr>
<td>PLH040013</td>
<td>Cyprianika</td>
</tr>
<tr>
<td>PLH040018</td>
<td>Torfowisko Mieleńskie</td>
</tr>
<tr>
<td>PLH040019</td>
<td>Ciechocinek</td>
</tr>
<tr>
<td>PLH040022</td>
<td>Krzewiny</td>
</tr>
<tr>
<td>PLH060016</td>
<td>Popówka</td>
</tr>
<tr>
<td>PLH060098</td>
<td>Wrzosowisko w Orzechowie</td>
</tr>
<tr>
<td>PLH060101</td>
<td>Horodyszcze</td>
</tr>
<tr>
<td>PLH060105</td>
<td>Maślachy</td>
</tr>
<tr>
<td>PLH080001</td>
<td>Dolina Leniwej Obry</td>
</tr>
<tr>
<td>PLH080006</td>
<td>Ujście Noteci</td>
</tr>
<tr>
<td>PLH080012</td>
<td>Kargowskie Zakola Odry</td>
</tr>
<tr>
<td>PLH080014</td>
<td>Nowosolska Dolina Odry</td>
</tr>
<tr>
<td>PLH120013</td>
<td>Pieniny</td>
</tr>
<tr>
<td>PLH140001</td>
<td>Bagno Całowanie</td>
</tr>
<tr>
<td>PLH140035</td>
<td>Puszcza Koziennicka</td>
</tr>
<tr>
<td>PLH160002</td>
<td>Góra Świętej Anny</td>
</tr>
<tr>
<td>PLH160007</td>
<td>Góry Opawskie</td>
</tr>
<tr>
<td>PLH200001</td>
<td>Jeleniewo</td>
</tr>
<tr>
<td>PLH200003</td>
<td>Ostoya Suwalska</td>
</tr>
<tr>
<td>PLH200004</td>
<td>Ostoya Wigierska</td>
</tr>
<tr>
<td>PLH220002</td>
<td>Biale Błoto</td>
</tr>
<tr>
<td>PLH220019</td>
<td>Orle</td>
</tr>
<tr>
<td>PLH220032</td>
<td>Zatoka Pucka i Półwysep Helski</td>
</tr>
<tr>
<td>PLH220044</td>
<td>Ostoya w Ujściu Wisły</td>
</tr>
<tr>
<td>PLH240016</td>
<td>Suchy Mlyn</td>
</tr>
<tr>
<td>PLH240040</td>
<td>Las koło Tworkowa</td>
</tr>
<tr>
<td>PLH260001</td>
<td>Dolina Krasnej</td>
</tr>
<tr>
<td>PLH260010</td>
<td>Lasy Suchedniowskie</td>
</tr>
<tr>
<td>PLH260014</td>
<td>Dolina Bobry</td>
</tr>
<tr>
<td>PLH260041</td>
<td>Wzgórze Chęcińsko-Kieleckie</td>
</tr>
<tr>
<td>PLH280007</td>
<td>Zalew Wiślany i Mierzeja Wiślana</td>
</tr>
<tr>
<td>PLH280032</td>
<td>Uroczysko Markowo</td>
</tr>
<tr>
<td>PLH280046</td>
<td>Swajnie</td>
</tr>
<tr>
<td>PLH280047</td>
<td>Torfowiska Zródliskowe koło Łąbędnika</td>
</tr>
<tr>
<td>PLH280050</td>
<td>Niedźwiedzie Wielkie</td>
</tr>
<tr>
<td>PLH280054</td>
<td>Mazurskie Bagna</td>
</tr>
<tr>
<td>PLH280055</td>
<td>Mazurska Ostoya Zółwia Baranowop</td>
</tr>
<tr>
<td>PLH300001</td>
<td>Biedrusko</td>
</tr>
<tr>
<td>PLH300003</td>
<td>Dąbrowy Obrzyckie</td>
</tr>
<tr>
<td>PLH300003</td>
<td>Dąbrowy Krotoszyńskie</td>
</tr>
<tr>
<td>PLH300010</td>
<td>Ostoya Wielkopolska</td>
</tr>
<tr>
<td>PLH300012</td>
<td>Rogalińska Dolina Warty</td>
</tr>
<tr>
<td>PLH320006</td>
<td>Dolina Plonii i Jezioro Miedwie</td>
</tr>
<tr>
<td>PLH320009</td>
<td>Jeziora Szczecineckie</td>
</tr>
<tr>
<td>PLH320011</td>
<td>Wielki Bytyń</td>
</tr>
<tr>
<td>PLH320018</td>
<td>Ujście Odry i Zalew Szczeciński</td>
</tr>
<tr>
<td>PLH320019</td>
<td>Wolin i Uznam</td>
</tr>
<tr>
<td>PLH320036</td>
<td>Bagno i Jezioro Ciemino</td>
</tr>
<tr>
<td>PLH320037</td>
<td>Dolna Odra</td>
</tr>
<tr>
<td>PLH320046</td>
<td>Uroczyska Puszczy Drawskiej</td>
</tr>
<tr>
<td>PLH320047</td>
<td>Warnie Bagno</td>
</tr>
<tr>
<td>PLH990002</td>
<td>Ostoya na Zatoce Pomorskie</td>
</tr>
</tbody>
</table>